Personalized Reduced 3-Lead System formation methodology for Remote Health Monitoring Applications and Reconstruction of Standard 12-Lead system

Authors

  • Sidharth Maheshwari Department of Electrical Engineering, Indian Institute of Technology Hyderabad, India.
  • Amit Acharyya
  • Michele Schiariti
  • Paolo Emilio Puddu

DOI:

https://doi.org/10.3823/1661

Keywords:

Reduced Lead system, Standard 12-lead system, PCA, Lead recontruction, Remote Health Monitoring

Abstract

Remote Health Monitoring (RHM) applications encounter limitations from technological front viz. bandwidth, storage and transmission time and the medical science front i.e. usage of 2-3 lead systems instead of the standard 12-lead (S12) system. Technological limitations constraint the number of leads to 2-3 while cardiologists accustomed with 12-Lead ECG may find these 2-3 lead systems insufficient for diagnosis. Thus, the aforementioned limitations pose self-contradicting challenges for RHM. A personalized reduced 2/3 lead system is required which can offer equivalent information as obtained in S12 system, thus, S12 system can be accurately reconstructed from the reduced system for diagnosis.

In this paper, we propose a personalized reduced 3-lead (R3L) system formation methodology which employs principal component analysis, thereby, reducing redundancy and increasing SNR ratio, hence, making it suitable for wireless transmission. Accurate S12 system is made available using personalized lead reconstruction methodology, thereby, addressing medical constraints. Mean R2 statistics values obtained for reconstruction S12 system from the proposed R3L system using PhysioNet’s PTB and TWA databases were 95.63% and 96.37% respectively. To substantiate the superior diagnostic quality of reconstructed leads, root mean square error (RMSE) metrics obtained upon comparing the ECG features extracted from the original and reconstructed leads, using our recently proposed Time Domain Morphology and Gradient (TDMG) algorithm, have been analyzed and discussed. The proposed system does not require any extra electrode or modification in placement positions and hence, can readily find application in computerized ECG machines.

Author Biography

Sidharth Maheshwari, Department of Electrical Engineering, Indian Institute of Technology Hyderabad, India.

Assistant Professor, Department of Electrical Engineering, Indian Institute of Technology Hyderabad, India.

References

Bosznai I, Ender F, Santha H. Web server based remote health monitoring system. In: 32nd International Spring Seminar on Electronics Technology, 2009 (ISSE 2009), 13-17 May 2009. p. 1-6. (DOI: 10.1109/ISSE.2009.5206985)

Puddu PE, D’Ambrosi A, Scarparo P, Centaro E, Torromeo C, Schiariti M, et al. A Clinician’s View of Next-Generation Remote Healthcare System. In: Maharatna K, Bonfiglio S, editors. Systems Design for Remote Healthcare. Springer New York, 2014. p. 1-30. (DOI: 10.1007/978-1-4614-8842-2_1)

Puddu PE, Morgan JM, Torromeo C, Curzen N, Schiariti M, Bonfiglio S. A Clinical Observational Study in the CHIRON Project: Rationale and Expected Results. In: Donnelly M, Paggetti C, Nugent C, Mokhtari M, editors. Impact Analysis of Solutions for Chronic Disease Prevention and Management. Springer Berlin Heidelberg, 2012, p. 74-82. (DOI: 10.1007/978-3-642-30779-9_10)

Liszka KJ, Mackin MA, Lichter MJ, York DW, Dilip P, Rosenbaum DS. Keeping a beat on the heart. Pervasive Comput. 2004 Oct; 3(4):42-9. (DOI: 10.1109/MPRV.2004.10)

Sharma LN, Dandapat S, Mahanta A. Multichannel ECG Data Compression Based on Multiscale Principal Component Analysis. IEEE Trans Inf Technol Biomed. 2012 July; 16(4):730-6. (DOI: 10.1109/TITB.2012.2195322)

Frank E. An accurate, clinically practical system for spatial vectorcardiography. Circulation. 1956; 13:737-49.

Hoekema R, Uijen GJH, van Oosterum A. On selecting a body surface mapping procedure. J Electrocardiol. 1999; 32(2):93-101. (DOI: 10.1016/S0022-0736(99)90088-2)

Dower GE. A lead synthesizer for the frank system to simulate the standard 12-lead electrocardiogram. J Electrocardiol 1968; 1(1):101-16. (DOI: 10.1016/0022-0736(88)90090-8)

Dawson D, Yang H, Malshe M, Bukkapatnam STS, Benjamin B, Komanduri R. Linear affine transformations between 3-lead (Frank XYZ leads) vectorcardiogram and 12-lead electrocardiogram signals. J Electrocardiol 2009; 42(6):622-30. (DOI: 10.1016/j.jelectrocard.2009.05.007)

Maheshwari S, Acharyya A, Puddu PE, Mazomenos EB, Schiariti M, Maharatna K. Robust and accurate personalised reconstruction of standard 12-lead system from Frank vectordcardiographic system. Comput Methods Biomech Biomed Eng Imaging Vis. 2014. (DOI: 10.1080/21681163.2014.931029)

Nelwan SP, Kors JA, Meij SH, van Bemmel JH, Simoons ML. Reconstruction of the 12-lead electrocardiogram from reduced lead sets. J Electrocardiol 2004; 37(1):11-18. (DOI: 10.1016/j.jelectrocard.2003.10.004)

Gregg RE, Zhou SH, Lindauer JM, Helfenbein ED, Field DQ. Limitations on the Re-use of patient specific coefficients for 12-lead ECG reconstruction. In: Computers in Cardiology 2008 Sept 14-17. p. 209-212. (DOI: 10.1109/CIC.2008.4749014)

Field DQ, Zhou SH, Helfenbein ED, Gregg RE, Lindauer JM. Technical challenges and future directions in lead reconstructions for reduced-lead systems. J Electrocardiol 2008; 41(6):466-73. (DOI: 10.1016/j.jelectrocard.2008.07.019)

Maheshwari S, Acharyya A, Puddu PE, Schiariti M. Reduced lead system selection methodology for reliable standard 12-lead reconstruction targeting personalised remote health monitoring applications. Comput Methods Biomech Biomed Eng Imaging Vis. 2014; 2(2):107-20. (DOI: 10.1080/21681163.2013.859097)

Finlay DD, Nugent CD, Kellet JG, Donnelly MP, McCullagh, Black ND. Synthesising the 12-lead electrocardiogram: Trends and challenges. Eur J Intern Med 2007; 18(8):566-70. (DOI: 10.1016/j.ejim.2007.04.011)

Trobec R, Tomasic I. Synthesis of the 12-Lead Electrocardiogram From Differential Leads. IEEE Trans Inf Technol Biomed. 2011 July; 15(4): 615-21. (DOI: 10.1109/TITB.2011.2159236)

Finlay DD, Nugent CD, Donnelly MP, Lux RL. Eigenleads: ECG Leads for Maximizing Information Capture and Improving SNR. IEEE Trans Inf Technol Biomed. Jan 2010; 14(1):69-78. (DOI: 10.1109/TITB.2009.2022933)

Axisa F, Schmitt P, Gehin C, Delhomme G, McAdams E, Dittmar A. Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention. IEEE Trans Inf Technol Biomed. Sept 2005; 9(3):325-336. (DOI: 10.1109/TITB.2005.854505)

Tsouri GR, Ostertag MH. Patient-Specific 12-Lead ECG Reconstruction From Sparse Electrodes Using Independent Component Analysis. IEEE J Biomed Health Inform. Mar 2014; 18(2):476-82. (DOI: 10.1109/JBHI.2013.2294561)

Maheshwari S, Acharyya A, Rajalakshmi P, Puddu PE, Schiariti M. Accurate and reliable 3-lead to 12-lead ECG reconstruction methodology for remote health monitoring applications. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), Oct 2013. P. 233-37. (DOI: 10.1109/HealthCom.2013.6720673)

Maheshwari S, Acharyya A, Rajalakshmi P, Puddu PE, Schiariti M. Accurate and reliable 3-lead to 12-lead ECG reconstruction methodology for remote health monitoring applications. IRBM. Dec 2014; 35(6):341-350. (DOI: 10.1016/j.irbm.2014.07.004)

Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation. 2000; 101(23):e215-e220.

Bousseljot R, Kreiseler D, Schnabel A. Nutzung der EKG Signaldatenbank CARDIODAT der PTB ber das Internet. Biomedizinische Technik. 1995; 40(1 supp):317.

Moody GB. The PhysioNet / Computers in Cardiology Challenge 2008: T-Wave Alternans. In: Computers in Cardiology 2008. p. 505-8.

Sharma LN, Dandapat S, Mahanta A. Multiscale principal component analysis to denoise multichannel ECG signals. CIBEC 2010: 5th Cairo International Biomedical Engineering Conference; Dec 2010. p. 17-20. (DOI: 10.1109/CIBEC.2010.5716093)

Martis RJ, Chakraborty C, Ray AK. An Integrated ECG Feature Extraction Scheme Using PCA and Wavelet Transform. INDICON 2009: Annual IEEE India Conference, Dec 2009. p. 1-4. (DOI: 10.1109/INDCON.2009.5409439)

Frank E. General Theory of Heart-Vector Projection. Circulation Research. 1954; 2(3):258-70. (DOI: 10.1161/01.RES.2.3.258)

Levkov CL. Orthogonal electrocardiogram derived from the limb and chest electrodes of the conventional 12-lead system. Med Biol Eng Comput. 1987; 25(2):155-64. (DOI: 10.1007/BF02442844)

Jolliffe IT. Principal Component Analysis. Springer Series in Statistics, Springer New York 2002.

Zhang D. Wavelet Approach for ECG Baseline Wander Correction and Noise Reduction. IEEE EMBS 2005: 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005. p. 1212-5. (DOI: 10.1109/IEMBS.2005.1616642)

Antoniadis A, Bigot J, Sapatinas T. Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study. J Stat Softw. Jun 2001; 6(6):1-83.

Mazomenos EB, Chen T, Acharyya A, Bhattacharya A, Rosengarten J, Maharatna K. A Time-Domain Morphology and Gradient based algorithm for ECG feature extraction. ICIT 2012: IEEE International Conference on Industrial Technology, Mar 2012. p. 117-122. (DOI: 10.1109/ICIT.2012.6209924)

Mazomenos EB, Biswas D, Acharyya A, Chen T, Maharatna K , Rosengarten J, et al. A Low-Complexity ECG Feature Extraction Algorithm for Mobile Healthcare Applications. IEEE J Biomed Health Inform. Mar 2013; 17(2):459-69. (DOI: 10.1109/TITB.2012.2231312)

Horacek BM, Warren JW, Albano A, Palmeri MA, Rembert JC, Greenfield Jr. JC, Wagner GS. Development of an automated Selvester Scoring System for estimating the size of myocardial infarction from the electrocardiogram. J Electrocardiol. 2006; 39(2):162-8. (DOI: 10.1016/j.jelectrocard.2005.08.013)

Bono V, Mazomenos EB, Chen T, Rosengarten J, Acharyya A, Maharatna K, et al. Development of an Automated Updated Selvester QRS Scoring System Using SWT-Based QRS Fractionation Detection and Classification. IEEE J Biomed Health Inform. Jan 2014; 18(1):193-204. (DOI: 10.1109/JBHI.2013.2263311)

Maheshwari S, Acharyya A, Puddu PE, Schiariti M. Methodology for automated detection of fragmentation in QRS complex of Standard 12-lead ECG. IEEE EMBS 2013: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2013. p. 3789-3792. (DOI: 10.1109/EMBC.2013.6610369)

Maheshwari S, Acharyya A, Puddu PE, Mazomenos EB, Leekha G, Maharatna K, Schiariti M. An automated algorithm for online detection of fragmented QRS and identification of its various morphologies. J R Soc Interface. 2013; 10(89). (DOI: 10.1098/rsif.2013.0761)

Afonso V, Tompkins WJ, Nguyen T, Luo S. ECG beat detection using filter banks. IEEE Trans Biomed Eng. 1999; 46(2):192-202. (DOI: 10.1109/10.740882)

Clifford GD. ECG tools. Available from : http://www.robots.ox.ac.uk/~gari/CODE/ECGtools

Mathworks. Boxplot. Available from : http://www.mathworks.in/help/stats/boxplot.html

Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. Apr 2005; 5(13). (DOI: 10.1186/1471-2288-5-13)

Downloads

Published

2015-03-31

Issue

Section

Translational Cardiology