Assessment of Bayesian Estimators for Osteoporosis Analysis

Authors

  • Leandro Luiz Mazzuchello Universidade do Extremo Sul Catarinense (UNESC)
  • Larissa Letieli Toniazzo de Abreu Universidade do Extremo Sul Catarinense (UNESC)
  • Carolina Pedrassani de Lira Universidade do Extremo Sul Catarinense (UNESC)
  • Maitê Gabriel dos Passos Universidade do Extremo Sul Catarinense (UNESC)
  • Ramon Venson Universidade do Extremo Sul Catarinense (UNESC)
  • Abigail Lopes Universidade do Extremo Sul Catarinense (UNESC)
  • Diego Garcia Universidade do Extremo Sul Catarinense (UNESC)
  • Maria Marlene Souza Pires Universidade Federal de Santa Catarina (UFSC)
  • Eros Comunello Universidade Federal de Santa Catarina (UFSC)
  • Luciane Bisognin Ceretta Universidade do Extremo Sul Catarinense (UNESC)
  • Paulo João Martins Universidade do Extremo Sul Catarinense (UNESC)
  • Priscyla Waleska Simões Universidade do Extremo Sul Catarinense (UNESC)

DOI:

https://doi.org/10.3823/1839

Keywords:

medical informatics, artificial intelligence, data mining, bayes theorem, osteoporosis

Abstract

Background: Bayesian classifiers have the advantage of determining the class to which a given record belongs compared to traditional classifiers, taking as base the probability of an element belonging to a class. Thus, the diagnosis of diseases such as osteoporosis and osteopenia can become faster and precise.This paper presents an assessment of the accuracy of the Bayesian classifiers Bayes Net, Naive Bayes and Averaged One-Dependence Estimators to support diagnoses of osteopenia and osteoporosis. Method: The methodology that guided the development of this research relied on the choice of database, the study of the Bayes Net, Naive Bayes and Averaged One-Dependence Estimators algorithms, and the description of the experiments. Results: The algorithm with the highest specificity was Bayes Net, (53.0±0.27). The highest accuracy was obtained using the AODE classifier (83.0±0.17). Our results showed higher mean instances correctly classified using the Naive Bayes algorithm (82.84±14.42), and the average of incorrectly classified instances was higher for Bayes Net (17.46±14.76). Conclusion: Based on the statistical measures analyzed in the experiments (instances classified correctly and incorrectly, the kappa coefficient, mean absolute error, sensitivity, specificity, accuracy, recall, F-measure, and Area Under Curve (AUC)), all classifiers showed good results, thus, given these data, it is possible to produce a reasonably accurate estimate of the diagnosis.

References

Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster J-Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2012: 24 :23–57.

Fontes MPF; Araújo LFB; Soares PRG. Osteoporose no climatério I: epidemiologia, definição, rastreio e diagnóstico. Femina 2012: 40(2): 109-116.

Eriksen FE. Treatment of osteopenia. Rev Endocr Metab Disord 2011: 13:209–223.

Warriner HA, Saag GK. Osteoporosis Diagnosis and Medical Treatment.Orthop Phys Ther Clin N Am 2013: 44: 125-135.

Kaufman JM, Lapauw B, Goemaere S. Current and future treatments of osteoporosis in men. Best Pract Res Clin Endocrinol Metab 2014: 28(6):871-884.

Rodrigues FA, Amaral LR. Aplicação de Métodos Computacionais de Mineração de Dados na Classificação e Seleção de Oncogenes Medidos por Microarray. Rev bras cancerol 2012: 58(2): 241-249.

Rezende, SO. Sistemas inteligentes: fundamentos e aplicações. Barueri, SP: Manole, 2005.

Mello, LC. Descoberta de conhecimento em banco de dados (mineração de dados) e redes bayesianas: estado da arte, 2001.

Santos EB. A Ordenação das Variáveis no Processo de Otimização de Classificação Bayesianos: Uma Abordagem Evolutiva [master’s thesis]. [São Carlos]: Universidade Federal de São Carlos. Curso Ciência da Computação; 2007.

Cruz-Ramírez N, Acosta-Mesa HG, Carrillo-Calvet H, Nava-Fernández LA, Barrientos-Martínez RE. Diagnosis of breast cancer using Bayesian networks: a case study. Comput Biol Med 2007: 37(11):1553-64.

Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Mach Learn 1997: 29:131-163.

Htike ZZ, Win LS. Classification of eukaryotic splice-junction genetic sequences using Averaged One-Dependence Estimators with subsumption resolution. Procedia Comput Sci 2013: 23:36-43.

Martínez-Morales M, Cruz-Ramírez N, Jiménez-Andrade JL, Garza-Domínguez R. Bayes-N: An Algorithm for Learning Bayesian Networksfrom Data Using Local Measures of Information Gain Applied to Classification Problems. Veracruz, México: MICAI; 2004. pp. 527-535.

World Health Organization. Burden of disease in DALYs by cause, sex and mortality stratum in WHO regions, estimates for 2002. Geneva: World Health Organization, 2004.

Abrahamsen B, Rejnmark L, Nielsen SP, Rud B, Nissen N, Mosekilde L, Bärenholdt O, Jensen JE. Ten-year prediction of osteoporosis from baseline bone mineral density: development of prognostic thresholds in healthy postmenopausal women. The Danish Osteoporosis Prevention Study. Osteoporos Int 2006: 17(2):245-51.

Ferreira D, Oliveira A, Freitas A. Applying data mining techniques to improve diagnosis in neonatal jaundice. BMC Med Inform Decis Mak 2012: 12:143.

Ng SYS, Xing Y, Tsui LK. A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Appl Energy 2014: 118: 114-123.

Li L, Zhang Q, Ding Y, Jiang H, Thiers BH, Wang JZ. Automatic diagnosis of melanoma using machine learning methods on a spectroscopic system. BMC Med Imaging 2014: 14(1):36.

Wang KJ, Makond B, Wang KM. Modeling and predicting the occurrence of brain metastasis from lung cancer by Bayesian network: a case study of Taiwan. ComputBiol Med 2014: 47:147-60.

Chimieski BF, Fagundes RDR. Association and Classification Data Mining Algorithms Comparison over Medical Datasets. J. Health Inform 2013: 5(2): 44-51.

Amorim JVM, Barone D, Mansur UA. Técnicas de Aprendizado de Máquina Aplicadas na Previsão de Evasão Acadêmica. XIX Simpósio Brasileiro de Informática na Educação; Nov 12-14; Fortaleza, CE. Rio de Janeiro, 2008.

Tenório JM, Hummel AD, Cohrs FM, Sdepanian VL, Pisa IT, de Fátima Marin H. Artificial intelligence techniques applied to the development of a decision-support system for diagnosing celiac disease. Int J Med Inform 2011: 80(11):793-802.

Flores JM, Gámez AJ, Martínez MA. Domains of competence of the semi-naive Bayesian network classifiers. Inf Sci 2014: 260: 120-148.

Downloads

Published

2015-10-13

Issue

Section

Applied Technology in Medicine

Most read articles by the same author(s)