Intestinal colonization of infants with multidrug resistant Pseudomonas aeruginos in tertiary care center in Jordan
DOI:
https://doi.org/10.3823/834Keywords:
Pseudomonas.aeruginosa, Feces, Jordanian infants, ESBLs and MBLs, virulence genesAbstract
Background: Pseudomonas.aeruginosa is among the most common opportunistic hospital pathogens, which exhibit an innate resistance and has developed increasing resistance to many useful antimicrobial agents over the last decades. This study investigated the occurrence of important types of ESBLs and MBLs in association with potential important virulence factors among P. aeruginosa isolates from feces of Jordanian infants.
Methods: A total of 302 feces samples were obtained randamely from neonates and infants admitted to Pediatric Clinic and the Neonate Intensive Care Unit (NICU)/Jordan University Hospital (JUH), over a 9-months period(2016- 2017). Fecal samples were cultured for P.aeruginosa and their growth was identified and tested using microbiological and antibiotic susceptibility methods. Additionly, virulence factors, antimicrobial resistance genes and genotypes were detected using Polymerase Chain Reaction (PCR).
Results: A total of 16/302 (5.3%) of P. aeruginosa isolates were recovered from feces samples. Antimicrobial susceptibility of the isolates ranged between the lowest 18.75% to meropenem and highest of 87.5% to azetreonam among 9 tested drugs. The percentage of specific genes of ESBLs and MBLs in 16 P.aeruginosa isolates were the following: blaOXA-50, blaTEM, blaCTX-M , blaVIM ,blaKPC , blaSHV ,blaGES, and blaVEB were detected at the rate of 13(81.2%), 13(81.2%), 12(75%), 12(75%), 11(68.7%), 10(62.5%), 2(12.5),1(6.2%), respectively. The percentage of the potential virulence genes in the same isolates were detected as follow: lasB, algD , toxA, exo S and exo U at the rate of 100%, 87.5% , 81.2%, 81.2%,31.2, respectively. All P.aeruginosa isolates observed to develop beta-hemolysis on both human and sheep blood agar, and to produce either pyoverdin ((56.3%) or pyocyanin (43.7%).
Conclusions: The present study demonstrates high occurrence of multidrug resistant P.aeruginosa isolates in infant feces which carried high rates of important genes of ESBLs and MBLs and potential virulence factors.
References
Walkty A., Lagace-Wiens P, Adam H., Baxter M., Karlowsky J., Mulvey MR., Zhanel GG. Antimicrobial susceptibility of 2906 Pseudomonas aeruginosa clinical isolates obtained from patients in Canadian hospitals over a period of 8 years: Results of the Canadian Ward surveillance study (CANWARD), 2008. Diag Microbiol Infect Dis 2017; 87(1): 60-63.
Chatterjee M, Anju CP, Biswas L, Kumar VA, Mohan CG, Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol2016; 306(1: 48-58.
Nguyen L, Garcia J, Gruenberg K, MacDougall C. Multidrug Resistant Pseudomonas Infections: Hard to Treat, But Hope on the Horizon? Curr Infect Dis Rep. 2018; 6;20(8):23.
Koutsogiannou M, Drougka E, Liakopoulos A, Jelastopulu E, Petinaki E, Anastassiou ED, et al. Spread of Multidrug-Resistant Pseudomonas aeruginosa Clones in a University Hospital. J Clin Microbiol 2013;51(2): 665–668.
Al Dawodeyah HY, Nathir Obeidat N , Abu-Qatouseh LF, Shehabi A A. Antimicrobial resistance and putative virulence genes of Pseudomonas aeruginosa isolates from patients with respiratory tract infection. Germs 2018; 8(1):31-40.
Hashem H, Hanora A, Abdalla S, Shawky A, Saad A. Carbapenem Susceptibility and Multidrug-Resistance in Pseudomonas aeruginosa Isolates in Egypt. Jundishapur J Microbiol 2016; 9(11).
Hong DJ., Bae IK, Jang IH, Jeong SH, Kang, HK, Lee K. Epidemiology and characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa. Infect Chemother 2015;47(2): 81-97.
Gupta V, Datta P, and Chander J. Prevalence of metallo beta lactamase (MBL) producing Pseudomonas spp. and Acinetobacter spp. in a tertiary care hospital in India. J Infect 2006; 52: 311-314.
Breidenstein EB, de la Fuente-Núñez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 2011; 19(8):419-426.
Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rrev 2009; 22(4): 582-610.
Shehabi AA, Masoud H, Balkam Maslamani FA. Common Antimicrobial Resistance Pattern, Biotypes and Serotypes Found among Pseudomonas aeruginosa Isolates from Patient’s Stools and Drinking Water Sources in Jordan. J Chemother 2005; 17 (2): 179-183.
Rosenthal VD, Al-Abdely HM, El-Kholy AA, AlKhawaja SAA, Leblebicioglu H, Mehta Y, et al. International Nosocomial Infection Control Consortium report, data summary of 50 countries for 2010-2015: Device-associated module. Am J Infect Control 2016; 44(12): 1495-1504.
Lau GW, Hassett DJ, Britigan BE. Modulation of lung epithelial functions by Pseudomonas aeruginosa. Trends in microbiology 2005; 13(8): 389-397.
Dénervaud V1, TuQuoc P, Blanc D, Favre-Bonté S, Krishnapillai V, Reimmann C. Characterization of cell-to-cell signaling-deficient Pseudomonas aeruginosa strains colonizing intubated patients. J Clin Microbiol. 2004;42(2):554-62.
Mitov I, Strateva T, Markova B. Prevalence of virulence genes among Bulgarian nosocomial and cystic fibrosis isolates of Pseudomonas aeruginosa. Braz J Microbiol 2010;41(3):588-595.
Hauser AR, Jain, M Bar-Meir M, McColley SA. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin Microbial Reviews 2011;24(1):29-70.
Shaikh S, Fatima J, Shakil S, Rizvi S MD, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci 2015; 22(1):90-101.
Gonc alves IR. Cavalcanti Dantas RC , Ferreira M L, da Fonseca Batistão DW, Gontijo-Filho PP, Ribas RM . Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation. Braz J Microbiol 2017;48:
–217.
Shehabi AA and Kamal MA. Pseudomonas aeruginosa, a common opportunistic pathogen in Jordan: A short review article. IAJAA 2019; 9:1,1.
Mahfoud M, Al Najjar M, Hamzeh AR. Multidrug resistance in Pseudomonas aeruginosa isolated from nosocomial respiratory and urinary infections in Aleppo, Syria. J Infect Develop Count 2018; 9(2):210-3.
Hayajneh WA, Hajj A, Hulliel F, Sarkis DK, Irani-Hakimeh N, Kazan L, et al. Susceptibility trends and molecular characterization of Gram-negative bacilli associated with urinary tract and intra-abdominal infections in Jordan and Lebanon: SMART 2011–2013. Int J Infect Dis 2015;35:56-61
Al Bayssari C, Diene SM, Loucif L, Gupta SK, Dabboussi F, et al. Emergence of VIM-2 and IMP-15 Carbapenemases and Inactivation of OprD Gene in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolates from Lebanon. Antimicrob Agents Chemother 2014; 58(8): 4966-4970.
Mansour SA, Eldaly O, Jiman-Fatani A, Mohamed ML, Ibrahim EM. Epidemiological characterization of P. aeruginosa isolates of intensive care units in Egypt and Saudi Arabia. East Mediterr Health J 2013;19:71-80.
Clinical Laboratory and Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard – tenth edition. CLSI document M07-A10 Villanova, PA, USA: CLSI, 2015.
Spilker T, Coenye T, Vandamme P, LiPuma JJ. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clini Microbial 2004; 42(5):2074-2079.
Bokaeian M, Shahraki Zahedani S, Soltanian Bajgiran M, Ansari Moghaddam A. Frequency of PER, VEB, SHV, TEM and CTX-M genes in resistant strains of Pseudomonas aeruginosa producing extended spectrum β-lactamases. Jundishapur J Microbiol 2014;8: e13783
Jiang X , Ni Y, Jiang Y, Yuan F, Han L, Li M, et al. Outbreak of infection caused by Enterobacter cloacae producing the novel VEB-3 beta-lactamase in China. J Clin Microbiol. 2000;43(2): 826-31.
Hemalatha V, Sekar U, Kamat V. Detection of metallo betalactamase producing Pseudomonas aeruginosa in hospitalized patients. Indian J Med Res 2005;122(2):148.
Fazeli N, Momtaz H. Virulence gene profiles of multidrug-resistant Pseudomonas aeruginosa isolated from Iranian hospital infections. Iran Red Crescent Med J. 2014; 18;16(12).
Polotto M1, Casella T, de Lucca Oliveira MG, Rúbio FG, Nogueira ML, de Almeida MT, et al. Detection of P. aeruginosa harboring bla CTX-M-2, bla GES-1 and bla GES-5, bla IMP-1 and bla SPM-1 causing infections in Brazilian tertiary-care hospital. BMC Infect Dis. 2012; 3;12:176.
Akpaka PE, Swanston WH, Ihemere HN,Ihemere NH, Correa A, Torres A J. et al. Emergence of KPC-producing Pseudomonas aeruginosa in Trinidad and Tobago. J Clin Microbiol 2009; 47(8):2670-1.
Girlich D, Naas T, Nordmann P. Biochemical Characterization of the Naturally Occurring Oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrobial Agent Chempther 2004;48: 2043–2048.
Bonnin RA, Naas T, Poirel L, Nordmann, P. Phenotypic, biochemical, and molecular techniques for detection of metallo-β-lactamase NDM in Acinetobacter baumannii. J Clin Microbiol 2012; 50(4):1419-1421.
Wolska K, Szweda P. Genetic features of clinical Pseudomonas aeruginosa strains. Pol J Microbiol 2009;58:255-60.
Magill SS, Edwards JR, Bamberg W, Beldavs ZG., Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care–associated infections. New Eng J Med 2014; 370(13): 1198-1208.
Harris AD, Jackson SS, Robinson G, Pineles L, Leekha S, Thom KA, et al. Pseudomonas aeruginosa colonization in the intensive care unit: prevalence, risk factors, and clinical outcomes. Infect Control Hosp Epidemiol 2016; 37(5): 544-548.
Jefferies JMC, Cooper T, Yam T, Clarke SC. Pseudomonas aeruginosa outbreaks in the neonatal intensive care unit–a systematic review of risk factors and environmental sources. J Med Microbiol 2012;61(8):1052-1061.
Modi SR, Collins JJ, Relman DA. Antibiotics and the gut microbiota. J Clinical Invest 2014; 124(10): 4212.
Chuang CH , Janapatla RP, Wang YH, Chang HJ, Huang YC, Lin TY, et al..Pseudomonas aeruginosa-Associated Diarrheal Diseases in Children. Pediatr Infect Dis J. 2017;36(12):1119-1123..
Nesher L, Rolston KVI, Shah DP, Tarrand JT, Mulanovich V, Arizaâ€Heredia, EJ, et al. Fecal colonization and infection with Pseudomonas aeruginosa in recipients of allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis 2015 17(1): 33-38.
Ozsurekci Y , Aykac K , Cengiz AB , Basaranoglu ST , Sancak B , Karahan S , et al. Bloodstream infections in children caused by carbapenem-resistant versus carbapenem-susceptible gram-negative microorganisms: Risk factors and outcome. Diagn Microbiol Infect Dis. 2017; 87(4):359-364.
Al Bayssari C, Diene SM, Loucif L, Gupta SK., Dabboussi F, Mallat H, Emergence of VIM-2 and IMP-15 carbapenemases and inactivation of oprD gene in carbapenem-resistant Pseudomonas aeruginosa clinical isolates from Lebanon. Antimicrob Agents chemother 2014; 58(8): 4966–4970.
Folgori L, Bielicki J, Heath PT, Sharland M. Antimicrobial-resistant Gram-negative infections in neonates: burden of disease and challenges in treatment. Curr Opin Infect Dis 2017; 30(3): 281-288.
Pepin CS, Thom KA, Sorkin JD, Leekha S, Masnick M, Preas MA,et al. Risk Factors for Central-Line–Associated Bloodstream Infections: A Focus on Comorbid Conditions. Infect control Hosp epidemiol 2015; 36(4): 479-481.
Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis 2016; 3(1):15-21.
Rizek C, Fu L, dos Santos LC, Leite G, Ramos J, Rossi F, et al. Characterization of carbapenem-resistant Pseudomonas aeruginosa clinical isolates, carrying multiple genes coding for this antibiotic resistance. Ann Clin Microbiol Antimicrob. 2014; 2:13:43
Vanegas JM, Cienfuegos AV, Ocampo AM, López L, del Corral H, Roncancio, G, et al. Similar frequencies of Pseudomonas aeruginosa isolates producing KPC and VIM carbapenemases in diverse genetic clones at tertiary-care hospitals in Medellin, Colombia. J Clin Microbiol 2014; 52(11):3978-3986
Hall S, McDermott C, Anoopkumar-Dukie S, McFarland AJ, Forbes A, Perkins AV, et al. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins 2016; 8(8): 236.
Downloads
Published
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access and Benefits of Publishing Open Access).
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
Articles are published Under License of Creative Commons Attribution 3.0 License ©
Copyright policies & self-archiving
This is our Copyright Policy. We are a RoMEO green journal.
Author's Pre-print: | ![]() |
Author's Post-print: | ![]() |
Publisher's Version/PDF: | ![]() |