Molecular determinants of ß-lactamase producing Klebsiella pneumoniae in Mansoura University Neonatal Intensive Care Unit

Authors

  • Enas Hammad Faculty of Medicine, Mansoura University, Egypt
  • Hamdia Askar
  • Mohammed Saleh
  • Basma Shouman

DOI:

https://doi.org/10.3823/766

Keywords:

K. pneumoniae, ESBL, Egyptian neonates.

Abstract

Background: The emergence of ß-lactamase- producing Klebsiella pneumonia (K. pneumoniae), represents a significant diagnostic and therapeutic challenge to the management of infections caused by this organism. This prospective study aimed at studying the frequency of ß-lactamase production by K. pneumoniae in neonatal intensive care unit (NICU) of Mansoura University Children’s Hospital.

Methods: This prospective study was conducted over a period of thirty six months from September 2010 to August 2013, where 684 samples were collected from different body sites of neonates in the NICU. Microbial isolation, identification and antimicrobial susceptibility testing were carried out.  ß-lactamase production by K. pneumoniae isolates was tested by phenotypic methods and PCR amplification of related genes using a six-gene panel for the amplification of the blaCMY-2, blaDHA, blaACC, blaSHV, blaTEM and blaCTX-M genes. In vitro transformation and conjugation were carried out to test for plasmid mediated AmpC ß- lactamase resistance transmission to E. coli.

Results: K. pneumoniae was isolated at a percentage of 12.6% and ß-lactamase production was detected in 62.8% of the isolates.  The most commonly detected ß-lactamase gene was blaSHV (51.9%), followed by BlaCMY-2 (16.67), blaDHA (12.96%), blaTEM (9.2%), blaCTX- M(7.4%) and lastly blaACC (1.85%). Additionally, some strains carried combinations of two or three genes. The plasmid carrying blaCMY-2 was 100% successfully transformed into the competent E. coli LE392 while conjugation with the E. coli ATCC 25922 was (77.8%) successful.

Conclusion: K. pneumoniae is a common multidrug resistant isolate; the production of ß-lactamases is the mechanism of resistance in a significant number of cases and represents a real risk for failure of many therapeutic options. This problem is highly complicated by the horizontal spread of resistance plasmids among microbial population.

Author Biography

Enas Hammad, Faculty of Medicine, Mansoura University, Egypt

Medical Microbiology and Immunology Department

Faculty of Medicine

Mansoura University

References

Shahid M, Malik A, Akram M, Agrawal LM, Khan AU, Agrawal M (2008): Prevalent phenotypes and antibiotic resistance in Escherichia coli and Klebsiella pneumoniae at an Indian tertiary care hospital: plasmid-mediated cefoxitin resistance. Int J Infect Dis, 12:256-264.

Villegas MV, Kattan JN, Quinteros MG, Casellas JM (2008): Prevalence of extended-spectrum beta-lactamases in South America. Clin Microbiol Infect. 14 (1):154-158.

Kong KF, Schneper L, and Mathee K. (2010): Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS.,118(1):1-36.

Lakshimi R, Nusrin K.S., Georogy S A, Sreelakshmi, KS. (2014): Role of beta lactamases in antibiotic resistance: A review. International Research Journal of Pharmacy, 5 (2) 37-40

Gupta V, Kumarasamy K, Gulati N, Garg R, Krishnan P, Chander J.(2012): AmpC β-lactamases in nosocomial isolates of Klebsiella pneumoniae from India. Indian J Med Res.,136 (2):237-41.

Philippon A, Arlet G, Jacoby GA. (2002): Plasmid-determined AmpC-type beta-lactamases. Antimicrob Agents Chemother. ; 46 (1):1-11. Review.

Grether JK, Nelson KB. (1997): Maternal infection and cerebral palsy in infants of normal birth weight. AMA.278:207-210.

Holmes B and Aucken HM (1998): Citrobacter, Enterobacter, Klebsiella ,Serratia and other members of the Enterobactericae. In Collier L, Balows SA and Sussman M. (eds): Topley and Wilson's Microbiology and Microbial infection. London: Arnolds, PP:999- 1035.

National Committee for Clinical Laboratory Standard Performance for Antimicrobial Disk Susceptibility Tests, Aproved standards, Viallanova, PA: NCLLS, 2000.

Sanders CC and Sanders WE (1992): Beta lactam resistance in gram negative bacteria: Global trends and clinical impact. Clin Infect Dis. 15: 824-839.

Yong D, Park R, Yum JH, Lee K, Choi EC, Chong Y (2002): Further modification of the Hodge test to screen AmpC beta-lactamase, CMY- 1–producing strains of Escherichia coli and Klebsiella pneumoniae. J Microbiol Methods; 51:407– 10.

Birnboim, H. C., and Doly, J. (1979): A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic acids Research, 7 : 1513-1523.

Hoyen, C. M., A. M. Hujer, K. M. Hujer, S. H. Marshall, L. Carias, P. Toltzis, L. B. Rice, and R. A. Bonomo. 2002. A clinical strain of Escherichia coli possessing CMY-2 plasmid-mediated ampC -lactamase: an emerging concern in pediatrics? Microb. Drug Resist. 8:329–333.

Jacoby GA, Han P. (1996): Detection of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol. 34: 908–911.

Pe´rez-Pe´rez, F. J., and Hanson ND (2002): Detection of plasmid-mediated AmpC ï¢ -lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40:2153–2162.

Wu, T.-L., Siu, L. K., Su, L.-H., Lauderdale, T. L., Lin, F. M., Leu, H.-S., Lin, T.-Y. & Ho, M. (2001). Outer membrane protein change combined with co-existing TEM-1 and SHV-1 b-lactamases lead to false identification of ESBL-producing Klebsiella pneumoniae. J Antimicrob Chemother 47, 755–761

Batchelor M, Hopkins K, Threlfall EJ, Clifton-Hadley FA, Stallwood AD, Davies RH, Liebana E. 2005. BlaCTX-M genes in clinical Salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob. Agents Chemother. 49:1319–1322.

Canto´n, R., and T. M. Coque. 2006. The CTX-M ï¢ -lactamase pandemic. Curr. Opin. Microbiol. 9:466–475.

Hoyen, C. M., A. M. Hujer, K. M. Hujer, S. H. Marshall, L. Carias, P. Toltzis, L. B. Rice, and Bonomo RA (2002): A clinical strain of Escherichia coli possessing CMY-2 plasmid-mediated ampC ï¢-lactamase: an emerging concern in pediatrics? Microb. Drug Resist. 8:329–333.

Oncul O, Keskin O, Acar HV, Kucukardali Y, Evrenkaya R, Atasoyu EM, Top C, Nalbant S, Ozkan S, Emekdas G, Cavuslu S, Us MH, Pahsa A and Gokben M (2002): Hospital-acquired infections following the 1999 Marmara earthquake. J Hos Infect. 51: 47-51.

Gikas A, Samonis G, Christidou A, Papadakis J, Kofteridis D, Tselentis Y and Tsaparas N (1998): Gram-negative bacteremia in non-neutropenic patients: a 3-year review. Infection. 26: 155-9.

Fung CP, Hu BS, Chang FY, Lee SC, Kuo BI, Ho M, Siu LK and Liu CY (2000): A 5-year study of the seroepidemiology of Klebsiella pneumoniae: high prevalence of capsular serotype K1 in Taiwan and implication for vaccine efficacy. J Infect Dis. 181: 2075-9.

Abdel-Hady, H, Hawas S, El-Daker, M and El-Kady, R (2008): Extended-spectrum beta-lactamase producing Klebsiella pneumoniae in neonatal intensive care unit Journal of Perinatology, 1–6

Romero ED, Padilla TP, Hernandez AH, Grande RP, Vazquez MF, Garcia IG, Garcia-Rodriguez JA, Munoz Bellido JL (2007): Prevalence of clinical isolates of Escherichia coli and Klebsiella spp. producing multiple extended-spectrum beta-lactamases. Diagn Microbiol Infect Dis 59:433-437.

Dhillon RH, Clark J. (2012): ESBLs: A Clear and Present Danger? Review Article Crit Care Res Pract.: 625170.

Wang G, Huang T, Surendraiah PK, Wang K, Komal R, Zhuge J, Chern CR, Kryszuk AA, King C, Wormser GP. (2013): CTX-M β-lactamase-producing Klebsiella pneumoniae in suburban New York City, New York, USA.

Emerg Infect Dis.;19 (11):1803-10.

Parveen RM, Khan MA, Menezes GA, Harish BN, Parija SC, Hays JP. (2011): Extended-spectrum β-lactamase producing Klebsiella pneumoniae from blood cultures in Puducherry. Indian J Med Res.; 134:392-5.

Fam N, Gamal D,; El-Said M, El-DefrawyI, El-Dadei E, El-Attar S, Sorur A, Ahmed S, and Klena J (2013): Prevalence of Plasmid-Mediated ampC Genes in Clinical Isolates of Enterobacteriaceae from Cairo, Egypt. British Microbiology Research Journal 3(4): 525-537, 2013

Tan TY, Ng SY, Teo L, Koh Y, Teok CH. (2008): Detection of plasmid-mediated AmpC in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis. J Clin Path ; 61:642-644.

Al-Agamy M H. (2013): Phenotypic and molecular characterization of extended-spectrum β-lactamases and AmpC β-lactamases in Klebsiella pneumonia. J. Pharm. Sci., 26(2):291-298

Al-Agamy M H. (2012): Genetic basis of cefotaxime resistant isolates of Klebsiella pneumonia from Cairo. African J of Microbiol Res; 6(1):20-27.

Yilmaz NO, Agus N, Bozcal E, Oner O, Uzel A. (2013): Detection of plasmid-mediated AmpC β-lactamase in Escherichia coli and Klebsiella pneumonia Indian J Med Microbio; 31(1):53-9.

Yamasaki K, Komatsu M, Abe N, Fukuda S, Miyamoto Y, Higuchi T, et al., (2010): Laboratory Surveillance for Prospective Plasmid-Mediated AmpC β Lactamases in the Kinki Region of Japan. J of Clin Microbiol.; 48(9):3267-3273.

Downloads

Published

2015-09-29

Issue

Section

Articles