Entropic Analysis of HRV in Obese Children


  • Franciele Vanderlei Department of Physiotherapy, UNESP - Univ Estadual Paulista - Presidente Prudente, Sao Paulo, Brazil
  • Luiz Carlos M. Vanderlei Department of Physiotherapy, UNESP - Univ Estadual Paulista - Presidente Prudente, Sao Paulo, Brazil
  • Luiz Carlos de Abreu Faculdade de Medicina do ABC. Departamento de Saúde da Coletividade. Disciplina de Metodologia Científica.
  • David Garner Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, United Kingdom




principal component analysis, electrocardiography, Rényi entropy, Tsallis entropy, obesity


The aim of the study was to analyze heart rate dynamics in obese children by functional entropic measures of Heart Rate Variability (HRV). HRV is a simple, reliable, cheap and non-invasive measure of autonomic impulses. We applied five technques based on entropy to assess the level of complexity. These were Shannon, Multiscale Tsallis and Multiscale Rényi entropies. Then, Approximate and Sample entropies. Ninety-four children of mixed gender aged eight to twelve years were divided into two equal groups (n=47) based on body mass index: obese and non-obese weight ranges. HRV was monitored in the dorsal decubitus position for 20 minutes. After Anderson-Darling and Ryan-Joiner tests of normality, the parametric test ANOVA1 was applied for the statistical analysis, with the level of significance set at (p<0.05); so the probability of a type I error was less than 5%. All types of functional entropies were significant at that level with the exception of Sample entropy. Furthermore, for all five measures the chaotic response increased when undergoing change from non-obese to obese. Regarding the application of Principal Component Analysis (PCA) the first two components represent 98.9% of total variance; a steep scree plot. The Multiscale Rényi (α=0.25), Shannon and Multiscale Tsallis (q=0.25) entropies performed simlarly regarding PCA and ANOVA1; whilst the Approximate and Sample entropies were also analogous with respect to these particular statisical tests. The Approximate entropy performed the most strongly with respect to p-value (p=0.0092) by ANOVA1 and PCA. With the exception of Sample entropy the entropic techniques described here were able to significantly quantify the increase in chaotic response when non-obese to obese children were assessed by the HRV.




Costa MD, Henriques T, Munshi MN, Segal AR, Goldberger AL. Dynamical glucometry: Use of multiscale entropy analysis in diabetes. Chaos. 2014;24(3):033139.

DOI: http://dx.doi.org/10.1063/1.4894537.

Goldberger AL, Rigney DR, West BJ. Chaos and fractals in human physiology. Sci Am. 1990;262(2):42-9.

Goldberger AL, West BJ. Chaos and order in the human body. MD Comput. 1992;9(1):25-34.

Seely AJE, Macklem PT. Complex systems and the technology of variability analysis. Crit Care. 2004;8(6):R367-84.

Silva LEV, Murta LO. Evaluation of physiologic complexity in time series using generalized sample entropy and surrogate data analysis. Chaos. 2012; 22(4): 043105.

DOI: http://dx.doi.org/10.1063/1.4758815.

Zyczkowski K. Renyi extrapolation of Shannon entropy. Open Sys Inf Dyn. 2003;10(3):297-310.

DOI: http://dx.doi.org/10.1023/A:1025128024427.

Shannon CE. A mathematical theory of communication. Bell Sys Tec J. 1948; 27(3): 379-423.

DOI: http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x

Richman JS, Lake DE, Moorman JR. Sample entropy. Methods Enzymol. 2004; 384:172-84.

DOI: http://dx.doi.org/10.1016/S0076-6879(04)84011-4.

Pincus S. Approximate entropy (ApEn) as a complexity measure. Chaos. 1995; 5(1): 110-7.

DOI: http://dx.doi.org/10.1063/1.166092.

Berntson GG, Bigger JT Jr, Eckberg DL, Grossman P, Kaufmann PG, Malik M, et al. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology. 1997; 34(6): 623-48.

DOI: http://dx.doi.org/10.1111/j.1469-8986.1997.tb02140.x.

Vanderlei FM, Vanderlei LC, Garner DM. Chaotic global parameters correlation with heart rate variability in obese children. Journal of Human Growth and Development. 2014;24(1):24-30.

Raimundo RD, Godleski JJ. Heart rate variability in metabolic syndrome. Journal of Human Growth and Development. 2015; 25(1): 7-10. DOI: http://dx.doi.org/10.7322/jhgd.96757

Vanderlei FM, Vanderlei LCM, Garner DM. Heart rate dynamics by novel chaotic globals to HRV in obese youths. Journal of Human Growth and Development. 2015; 25(1): 82-88.

DOI: http://dx.doi.org/10.7322/jhgd.96772.

Mackey CM, Milton JG. Dynamical diseases. Ann New York Acad Sci. 1987;504(1):16-32.

DOI: http://dx.doi.org/10.1111/j.1749-6632.1987.tb48723.x.

Vanderlei LCM, Silva RA, Pastre CM, Azevedo FM, Godoy MF. Comparison of the Polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains. Braz J Med Biol Res. 2008;41(10):854-9.

DOI: http://dx.doi.org/10.1590/S0100-879X2008005000039.

Godoy MF, Takakura IT, Correa PR. Relevância da análise do comportamento dinâmico não linear (Teoria do Caos) como elemento prognóstico de morbidade e mortalidade em pacientes submetidos à cirurgia de revascularização miocárdica. Arq Ciênc Saúde. 2005;12(4):167-71.

Bernardo AFB, Vanderlei LCM, Garner DM. HRV Analysis -- A clinical and diagnostic tool in Chronic Obstructive Pulmonary Disease. Int Schol Res Notices. 2014; 2014:1-6.

DOI: http://dx.doi.org/10.1155/2014/673232.

Fontes AMG, Garner DM, Abreu LC, Barbosa JC, Assis EV, Souza ACA, et al. Global chaotic parameters of heart rate variability during mental task. Complexity. 2015; 00(00):1-8.

DOI: http://dx.doi.org/10.1002/cplx.21656.

Fontes AMG, Guida HL, Barbosa JC, Antônio AMS, Cardoso MA, Garner DM, et al. Auditory stimulation with music intensifies cardiac autonomic responses to a mental task. Focus Alternative Compl Ther. 2014; 19(4): 198-207.

DOI: http://dx.doi.org/10.1111/fct.12145.

Walsh TS, Ramsay P, Lapinlampi TP, Sarkela MO, Viertio-Oja HE, Merilainen PT. An assessment of the validity of spectral entropy as a measure of sedation state in mechanically ventilated critically ill patients. Intensive Care Med. 2008;34(2):308-15.

DOI: http://dx.doi.org/10.1007/s00134-007-0858-x.

Wysocki M, Fiamma MN, Straus C, Poon CS, Similowski T. Chaotic dynamics of resting ventilatory flow in humans assessed through noise titration. Respir Physiol Neurobiol. 2006; 153(1): 54-65.

DOI: http://dx.doi.org/10.1016/j.resp.2005.09.008.

Ponnusamy A, Marques JL, Reuber M. Comparison of heart rate variability parameters during complex partial seizures and psychogenic nonepileptic seizures. Epilepsia. 2012; 53(8): 1314-21.

DOI: http://dx.doi.org/10.1111/j.1528-1167.2012.03518.x

Abásolo D, Hornero R, Espino P, Alvarez D, Poza J. Entropy analysis of the EEG background activity in Alzheimer's disease patients. Physiol Meas. 2006; 27(3): 241-53.

DOI: http://dx.doi.org/10.1088/0967-3334/27/3/003.

Shannon CE. A mathematical theory of communication. ACM Sigmobile Mobile Comp Comm Review. 2001;5(1):3-55.

DOI: http://dx.doi.org/10.1145/584091.584093.

Hornero R, Abásolo D, Escudero J, Gomez C. Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer's disease. Philos Trans A Math Phys Eng Sci. 2009; 367(1887): 317-36.

DOI: http://dx.doi.org/10.1098/rsta.2008.0197.

Anderson TW, Darling DA. A test of goodness of fit. J Am Statist Assoc. 1954;49(268):765-9.

DOI: http://dx.doi.org/10.1080/01621459.1954.10501232.

Ryan Jr TA, Joiner BL. Normal probability plots and tests for normality. [cited 2014 July 03] Available from: http://www.minitab.com/uploadedFiles/Content/News/Published_Articles/normal_probability_plots.pdf.

Razali NM, Wah YB. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. J Statist Mod Analytics. 2011; 2(1): 21-33.

Jolliffe I. Principal component analysis. Wiley Online Library; 2005.

DOI: http://dx.doi.org/10.1002/0470013192.bsa501.






Global Health & Health Policy

Most read articles by the same author(s)

1 2 3 4 > >>